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Abstract. The determination of natural frequencies and displacement Power Spectrum Density
(PSD) of fuel rods in a fluid using Computational Fluid Dynamics (CFD) and Finite Element
Methods (FEM) is presented. The rods are modeled as slender beams subjected to small
displacements in a fluid using three-dimensional mesh. The incompressible Navier-Stokes and
linear momentum balance equations are solved simultaneously using Spectrum code. Two
examples from literature are analyzed. The first consists in one rod in a fluid. The excitation
is an impulse force at the rod central node. The second example is a two rod system in a fluid.
In this case, the excitation force is random and is determined from a PSD.
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1. INTRODUCTION

Nuclear fuel rods are subjected to turbulent axial flow that induce lateral vibrations. These
vibrations can cause failures of the fuel rods if their movements exceed a reasonable value, with
the possibility of releasing nuclear material and consequent shutdown of the plant.

The flow around the rods is eminently axial. The random turbulence of this flow alters the
velocity field on the rods and consequently the pressure field. Hence, random excitation is
generated provoking rod vibrations. In previous works, the usual approach to analyze random
vibrations was to apply the excitation PSD into the transfer function of the system in order to
obtain the rod displacement PSD. This paper presents another method to calculate the natural
frequencies and displacement PSD of the rods by using multiphysics analysis in a FEM/CFD
solver. The solver used is the Spectrum, developed by Centric Engineering Systems Inc. This
code was chosen because of its capacity of solving the fluid flow and rod structural problem
simultaneously. This method has the advantage of considering the three-dimensionality of the
fluid-rod interaction problem but it requires considerable computer resources.

Two examples are presented. The first determines the natural frequencies of a rod in a
fluid and was experimentally studied by Burgreen et al. (1958). The excitation force is a unit
impulse applied at the rod central node. The second example determines the natural frequencies
and PSD of a two rod system in a fluid, and was analytically studied by Païdoussis et al.
(1985). A random excitation obtained from samplings of a force PSD is input at the rods.



2. GENERAL MODEL OF THE FLUID-ROD SYSTEM

The simulation of rod vibrations in a fluid is done using Spectrum code by solving
numerically the linear momentum balance and the Navier-Stokes equations. The relevant
numerical schemes used in this code are briefly presented in this Section.

The system consists of the rods and the turbulent axial flow. The domain is divided in three
parts. The first is the rod solid domain which is modeled using a linear stress analysis equation
with small deformations. The second part is the fluid domain, modeled by an isothermal
incompressible Navier-Stokes equation. Both the solid and fluid meshes are composed of three-
dimensional eight-noded elements. The third part is the fluid-solid interface, composed of two-
dimensional four-noded elements. The interface nodes belong to both solid and fluid regions.

The fluid uses the Arbitrary Lagrangian Eulerian (ALE) mesh concept (Centric, 1993).
This concept analyzes the fluid by the Eulerian viewpoint when it flows through the mesh and
by the Lagrangian viewpoint when mesh deformations are considered. In fluid problems with
fixed boundaries, the Eulerian viewpoint is used as it is impossible to follow fluid particles. The
main interest is in the domain which is fixed in time. However, for problems with changes in
the boundary, like the fluid-solid interaction problem, it is necessary to allow mesh movements
and the Eulerian viewpoint is difficult to use. For the cases where the domain needs to move,
the Lagrangian viewpoint is better, as it follows particles in time. The ALE model is designed
to allow mesh movements. In this model, the fluid flows through a moving mesh. Thus, the
model is a hybrid between the Eulerian and Lagrangian viewpoints, updating the nodal
coordinates and field variables in response to the moving boundaries while mesh connectivity is
maintained.

3. METHOD OF ANALYSIS OF ROD MOVEMENTS IN FREQUENCY DOMAIN

The frequency domain analysis determines the displacement PSD and natural frequencies
and consists of two parts: the first is a pre-processing part where the force PSD and variance
are determined. The time dependent forces are sampled using a Monte Carlo procedure and
applied into the FEM/CFD model. The second part is the post-processing which determines the
rod displacement PSD. This analysis is used in the two-rod-fluid system of Section 5.

3.1 Preprocessing part: Determination of force excitation and sampling procedure

The determination of the pressure Cross Spectral Density (CSD) and PSD on the rods is a
complicated task that can be done by experimental measurements of the pressure field. From
the pressure CSD and PSD, the force CSD and PSD in the x and y directions are obtained by:
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where θ  and ′θ  are the angular positions where pressures are measured, z  and ′z  are the
axial positions and ω  is the circular frequency. Next, the resulting force PSD and CSD are



used to determine the auto- and cross-correlations of the force distribution. These correlations
are represented by ( )R z zf fi j′

′, ,τ  (subscripts i and j can be x or y) and are given by:
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as the PSD and CSD are even functions. The correlation ( )R z zf fi j′
′, ,τ  is used to determine the

variance and covariance of the fluctuating force distribution for any position pair ( )z z, ′  and for
any time interval τ . The process is considered stationary. Hence, the covariance values are the
same for any equal time interval τ . The fluctuating force distribution is assumed to follow a
multidimensional Gaussian probability density function (pdf) with zero mean. The covariance of
the force pdf for two axial positions z z, ′  and for a time interval τ  is:
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With the variance and covariance of the force pdf known, the fluctuating force at each rod
central node is sampled as a function of time using a Monte Carlo code and input in the rods.

3.2 Postprocessing part: Determination of displacement PSD and natural frequencies

The output of the Spectrum solver is the rod displacement as a function of time. From this
output, the displacement PSD of the rod is determined and the natural frequencies obtained
from the peaks of the PSD curve. Two input parameters of the FEM code that influence this
solution must be analyzed: the total run time of the solver and the maximum time step.

•  Total run time of the FEM solver: The total run time can be determined from the desired
frequency scale resolution of the solution displacement PSD graph (Fig.1). This resolution
must allow the determination of the natural frequency differences of the modes of vibration.
This can be verified using the Fourier series expression. For a vector x  (displacement) that
represents a length N discrete signal obtained at time t with time step dt, the Fourier series is:
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The frequency resolution of the displacement PSD is obtained by setting k=1 in Eq. (7),
resulting in 2π ( )Ndt  rad/s or 1 ( )Ndt  Hz. As Ndt is the total run time for the program, we
have that the desired frequency resolution determines the total run time of the solver.

•  Maximum time step for the FEM solver: The maximum time step dt used in the FEM solver
for the rod displacement determination is given by the maximum frequency that is desired to be
obtained in the frequency scale of the displacement PSD graph. This maximum frequency must
be larger than the natural frequency of the system. From Eq. (7), the maximum frequency of
the displacement PSD graph is obtained when k=N/2, which is π dt rad/s or 1 2( )dt  Hz.
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Figure 1 - Definition of FEM solver parameters: total run time and maximum time step

4. EXAMPLE 1: NATURAL FREQUENCY OF A ROD IN A FLUID

The first example determines the fundamental natural frequency of a rod in a fluid. The rod
in this analysis corresponds to case C of Burgreen et al. (1958). The authors presented
experimental results for the natural frequency of a single rod and for a bundle of rods as a
function of the mean flow velocity. The rod is simply supported. The inlet flow profile is
modeled by a power law, as shown in Eq. (8). This equation considers the flow in the z-axis
direction inside a pipe of radius R. The value of exponent n is a function of Reynolds number
and was measured by Nikuradse (Hinze, 1975). For Reynolds numbers correspondent to the
flow velocities of Table 1, the value of n is about 8.
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4.1 Analytical value for the natural frequency of a rod in vacuum

The fundamental natural frequency for a simply supported rod in vacuum is given by Eq.
(9). For the aluminum rod (see data in Table 1), the fundamental natural frequency in vacuum
is 130.28 rad/s (20.7 Hz). Burgreen’s measurement for this natural frequency was 20 Hz.
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Table 1. Characteristics of the aluminum rod, channel and fluid (Burgreen et al., 1958)

rod density ρ 0.1 lb/in3

rod diameter d 0.625 in
rod area A 0.3068 in2

rod length L 48.0 in
rod inertia I 7.350e-3 in4

Young’s module E 10e6 psi
Hydraulic diameter 0.470 ft
Channel diameter 6.25 in
Channel length 72 in
fluid density 62.205 lb/ft3

fluid viscosity 6.412e-4 lb/(ft s)
fluid mean velocities used in the model 0, 6.2, 8.6, 12.2, 13.5, and 15.0 ft/s



4.2 FEM determination of the natural frequency of the rod in vacuum

The natural frequency of the rod in vacuum was determined using Spectrum code in order
to verify the mesh refinement. The rod mesh has 279 nodes and 120 elements (30 longitudinal
divisions). The natural frequency obtained from Spectrum code is 20.91 Hz. The run time was
about 20s on an HP-UX workstation. The result was considered satisfactory and this mesh was
used in the next step, which is the determination of the natural frequencies of the rod in a fluid.

4.3 FEM/CFD determination of the natural frequency of the rod in a fluid

The rod mesh is the same used in Section 4.2. The fluid mesh has 1784 nodes and 1464
elements. Its cross section is shown in Fig. 2. The fluid-rod interface has 248 four-noded plane
elements. The fluid region is 1.5 times the length of the rod region, with the rod centered in it.
The inlet fluid region length is divided into three parts. The mean fluid region length is divided
into thirty parts, following the rod division. The outlet fluid region length is divided into two
parts. For the cases where flow velocity is not zero, a previous CFD problem was run in order
to determine velocity and pressure in each fluid node, with the following boundary conditions:
all rod nodes are restrained, zero flow velocity at channel wall, non slip condition at fluid-rod
interface, inflow velocity given by a power-law profile with mean values given in Table 1, no
displacement of the fluid mesh at channel wall, and zero pressure at the outflow.

The fluid velocity and pressure results of this CFD problem were used in the fluid-rod
interaction problem as initial condition. For the fluid-rod interaction problem, the boundary
conditions are the same as mentioned above, except for the first one as rod displacements are
allowed. For this case, the first boundary condition states that the rod is simply supported,
being the others boundary conditions the same. The excitation force is a unit impulse with
0.01s of duration applied at the rod central node at time zero.

The results are compared to the results of Burgreen et al. (1958) in Table 2. In this table,
the results of a previous simulation using 10 longitudinal divisions in the rod are also presented
in order to show how mesh refinement influences the results. The run time for each natural
frequency determination, involving 2 to 3 periods of the harmonic movement of the rod central
node, was about 25 hours on an HP-UX workstation (for the 30 longitudinal division case).

Table 2. Results from FEM/CFD model and from rod #2 of Burgreen et al. (1958).

fluid velocity
(ft/s)

results for 10 divisions
in the rod length (Hz)

results for 30 divisions
in the rod length (Hz)

results from
Burgreen (Hz)

no fluid (in vacuum) 21.48 20.91 20
0 (static water) 17.93 17.38 17

6.2 18.59 18.14 17.5
8.6 18.33 18.07 17.5

10.6 18.30 18.02 17.5
12.2 18.51 17.98 17.5
13.5 18.30 17.90 17.5
15.0 18.33 17.94 17.5



Figure 2 - Cross section mesh of the rod and fluid regions.

5. EXAMPLE 2: NATURAL FREQUENCIES AND PSD OF TWO RODS IN A FLUID

This case uses the data of Païdoussis et al. (1985) and the pre- and post-processing method
of Section 3. In this reference, vibration analysis of clusters of two and three rods are
performed. The excitation function was the PSD and CSD of the fluctuating pressure field on
the rods. Just the two-rod system is going to be modeled using FEM/CFD. The two rods are
coupled due to the fluid. The inflow velocity is modeled by a power law profile (Eq. (8)). The
rods are simply supported. Their characteristics are presented in Païdoussis et al. (1985) using
dimensionless parameters. These characteristics are specified in Table 3 such that these
parameters are preserved, as dimension values must be used in the model.

Table 3. Characteristics of the rod, channel and fluid for example 2.

rod density ρrod
1137.2 kg/m3

rod diameter Drod=2Rrod 20 mm
rod length L 0.3334 m
rod inertia I 7853.98 mm4

Young’s module E 1.484 MPa
Poisson’s ratio υ 0.47
smallest inter cylinder gap 10 mm
smallest cylinder to channel gap 56.4 mm
Channel diameter Dch 162.8 mm
fluid density ρ fluid

996.4 kg/ m3

fluid viscosity 9.541e-7 kg/(mm s)
fluid mean velocity V 1.157 m/s

5.1 Analytical value for the natural frequency of the rod in vacuum

The fundamental natural frequency of a simply supported rod in vacuum is given by Eq.
(9). For a rod with the data shown in Table 3, this results in 16.04 rad/s or 2.55 Hz.

5.2 Determination of the natural frequency of the rod in vacuum (using FEM)

The natural frequency of the rod in vacuum was obtained using Spectrum code. The rod
mesh has 99 nodes and 40 elements (10 longitudinal divisions) for each rod. The fundamental
natural frequency obtained by Spectrum code is 15.25 rad/sec or 2.43 Hz (4.9% different from
the analytical result). This result can be improved by refining the mesh but this would increase
the computation time when working with the two-rods-fluid interaction. Due to computer
limitations, this is not desirable and the result is considered satisfactory.

x
y

Fluid region

Rod region



5.3 Determination of the natural frequencies and PSD of the rods in the fluid flow

The cross section meshes for the fluid and solid regions are shown in Fig. 3. The fluid mesh
has 1342 nodes and 1060 elements. The fluid region is 1.5 times the length of the rod region,
with the rod centered in it. The inlet fluid region length is divided in three parts. The mean fluid
region length is divided in ten parts, following the rod division. The outlet fluid region length is
divided in two parts. The rod mesh is the same of Section 5.2. The interface has 176 four
nodded elements. The time dependent excitation forces were input in the central nodes of each
longitudinal division of the rods. The boundary conditions for rods and fluid are the same of
Section 4.3. The running time was about 40 hours on a HP-UX workstation.

Figure 3 - Cross section of the fluid and of the two rods.

The pre-processing method for force sampling (Section 3.1) is used, with the following results:
•  Pressure power and cross spectrum density:
Païdoussis et al. (1985) presented equations for the pressure PSD and CSD of a turbulent flow
around a bundle of rods. The pressure PSD to be used here was derived from these equations
using the data of Table 3. In order to simplify the sampling procedure, the axial correlation
between the forces was neglected. This correlation is expected to be small as the longitudinal
division of the rod mesh is relatively large. The resulting pressure PSD is:
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where Vc
ω  is the frequency dependent convective velocity at which the disturbances are

transported dowstream, as defined by Bakewell (1968).
•  Determination of the force power and cross spectral density Sf fi j

( ):ω

The force PSD and CSD are determined by Eq. (1) to (3). The result of the numerical
integration of these equations is shown in Fig. 4. The force PSDs S f fx x

 and S f fy y
 are equal, as

expected. The cross spectral density S f fx y
 is negligible.
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Figure 4 - Force Power Spectrum Densities S f fx x
 and S f fy y

 as a function of frequency ω

•  Determination of the force cross correlation function:

The force cross correlation functions Rf fi j
( )τ  are equal to the covariance [ ]cov , ( )f fi j τ  as the

mean value of the force distribution is zero. They are obtained using Eq. (5). By neglecting the
axial dependence, this equation is reduced to (subscripts i and j can be x or y):
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The variance of the x and y components of the force are equal. The covariance between x and y
is negligible which means that the x and y force components are independent. The numerical
integration was done from 0 to 1000rad/s and for 100 values of time increment τ  (τ  is
multiple of the sampling time step). The sampling time step is 2.88e-2 s and is obtained by
dividing the rod element length (33.34 mm) by the mean flow velocity (1.157 m/s). This time
step is equivalent to a sampling frequency of 34.72 Hz. Thus, the covariance matrix terms are
determined as a function of the time increments by Eq. (13). This covariance matrix is used in a
Monte Carlo code in order to sample the values of the forces, as described in the next step.
•  Sampling of the force in each rod central node position:
The nodal forces are sampled using a Monte Carlo procedure (Sbragio, 1998): the force
covariance matrix is decomposed in two matrices using the Cholesky decomposition (Rabiner
et al., 1978). This decomposition expresses the covariance matrix as the product of a matrix by
its transpose. For zero mean Gaussian distributions, the decomposed matrix can be used to
transform the independent Gaussian samplings in a multivariate Gaussian distribution (Leon
Garcia, 1994). The sampled forces are then applied to the central node of each section of the
rod (except the end nodes, where no force is applied). Thus, for 10 divisions in each rod, 9
time-dependent forces in the x direction and 9 in the y direction are determined. The time
dependence is obtained by sampling each force 100 times according to the time correlation
previously determined. Hence, for two rods, a total of 36 independent multivariate Gaussian
distributions with order 100 were sampled.

The displacement results from Spectrum code are submitted to a post-processing frequency
domain analysis in order to obtain the natural frequencies and displacement PSD. Païdoussis et
al. (1985) present two natural frequencies for each of the principal directions of movement
(direction of the line that contains the rods, called radial direction and direction perpendicular
to this line, called tangential direction). The total run time of the code was 3.772 s. This run
time allowed to determine four natural frequencies, two for the radial direction displacements
and two for the tangential direction displacements. The normalized PSDs of the displacements
are shown in Fig. 5 and 6 and relates to the PSD by the following normalization formula:



( )[ ]PSD u k PSDnormalized = π εβ2 1 2 3
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=2k  constant = 2.0e-6. (18)

The parameters of these equations are shown in Table 3. Figure 5 shows the normalized
displacement PSD in the radial direction while Fig. 6 shows in the tangential direction. The
displacement PSDs determined in Païdoussis et al. (1985) are also shown for comparison.
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Figure 5 - Normalized displacement PSD in the radial direction.
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Figure 6 - Normalized displacement PSD in the tangential direction.

The natural frequencies are obtained from the peaks of the PSD graphs. The maximum
time step used at the Spectrum solver was 0.004s. The total number of determined
displacements was 943, covering a time history of the rod from 0s to 3.772s. According to
Section 3.2, the frequency resolution for this case is 0.2651 Hz (1.666 rad/s) and frequencies
are determined just in multiples of this value. If the difference between two natural frequencies
is below this value, it is not possible to distinguish between them. A way to avoid this problem
is increasing the number of sampled displacements which also increases the computation time.

The natural frequencies from Païdoussis et al. (1985) are presented as a dimensionless
frequency ϖ  which relates to circular frequency ω  by the following normalization formula:
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From Païdoussis et al. (1985), the dimensionless natural frequencies for this system are:
•    for movements in the radial direction: 2ϖ  = 6.95, and 3ϖ  = 8.73.



•    for movements in the tangential direction: 1ϖ = 6.65,  and 4ϖ  = 8.97.

The dimensionless natural frequencies obtained from the FEM/CFD simulation are 1ϖ  = ϖ 2  =

7.021 (8.329 rad/s) and 3ϖ  = 4ϖ  = 9.830 (11.660 rad/s). These values are comparable to the

natural frequencies of the system. It was not possible to distinguish between the results of the
radial and tangential directions because of the frequency resolution. In this example, the error
caused by the frequency resolution corresponds to a dimensionless value of 1.404 or 1.666
rad/s. This error is independent from the error due to the coarse mesh of the rod and fluid.

The natural frequency results from the FEM/CFD model are satisfactory in general but can
be improved by decreasing the frequency resolution value. This can be done by increasing the
number of displacement samples which increases the run time of the FEM/CFD solver.

6. CONCLUSION

This work presents a multiphysics simulation of rods in a fluid in order to determine their
vibration behavior. The solver used is the Spectrum code which allows a simultaneous analysis
of the fluid flow and rod movements by solving Navier Stokes and linear momentum equations.

Two examples are presented. The first example determines the natural frequencies of one
rod in fluid flows of different velocities. The agreement between the Spectrum code results and
the experimental data from Burgreen et al. (1958) was good even using a coarse mesh.

The second example determines the displacement PSD and natural frequencies of a system
of two rods in a fluid. The forcing function used to excite the rod was obtained by integration
of a pressure PSD function. The natural frequencies obtained in this example are quite
satisfactory. However, some discrepancy in the displacement PSD intensity was noticed,
probably due to the coarse mesh used. The forcing function used was taken from Païdoussis et
al. (1985) and is probably the most difficult part of the modeling effort.

Hence, this work has established in a limited extent the feasibility of using random analysis
and a commercial FEM/CFD code in order to study the complex problem of vibration of
nuclear fuel rods. Multiphysics computation is an important tool in the simulation of this kind
of problem as it allows the simultaneous solution of the vibration and flow problems.
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